Pages

Sunday 11 August 2013

NIAC 2013 Phase I winners showcases futuristic aerospace concepts

A nuclear-powered spacecraft is one winning concept of NASA's Innovative Advanced Concepts...
A nuclear-powered spacecraft is one winning concept of NASA's Innovative
A dozen inventors have received a chance to demonstrate the potential for their pet space projects as winners of NASA's 2013 Innovative Advanced Concepts (NIAC) Program Phase I awards. The winners were chosen based on their potential to transform future aerospace missions by enabling either breakthroughs in aerospace capabilities or entirely new missions. Read on for a closer look at some of the most promising proposals with a view to how they would work, and where the tricky bits might be hiding.
Each NIAC Phase I winner receives about US$100,000 to spend a year pursuing their ideas, including an initial feasibility study of a novel aerospace concept. The proposals this year include; 3D printing of biomaterials; using galactic rays to map the insides of asteroids; and an "eternal flight" platform that could hover in the Earth's atmosphere.
    The list of this year's awardees includes:
  • Rob Adams of NASA Marshall Space Flight Center – Pulsed Fission-Fusion (PuFF) propulsion system
  • John Bradford of SpaceWorks Engineering – Torpor inducing transfer habitat for human stasis to Mars
  • Hamid Hemmati of NASA Jet Propulsion – Two-dimensional planetary surface landers
  • Nathan Jerred of Universities Space Research Association - Dual-mode propulsion system enabling CubeSat exploration of the Solar System
  • Anthony Longman – Growth adapted tensegrity structures
  • Mark Moore of NASA Langley Research Center - Eternal flight as the solution for 'X'
  • Thomas Prettyman of the Planetary Science Institute – Deep mapping of small solar system bodies with galactic cosmic ray secondary particle showers
  • Lynn Rothschild of NASA Ames Research Center – Biomaterials out of thin air
  • Joshua Rovey of the University of Missouri – Plasmonic force propulsion revolutionizes Nano/PicoSatellite capability
  • Adrian Stoica of NASA Jet Propulsion Lab – Transformers for extreme environments
  • Christopher Walker of the University of Arizona – 10 meter sub-orbital balloon refletor
  • S.J. Ben Yoo of the University of California-Davis – Low-mass planar photonic imaging sensor
Let's take a look at three of the most promising concepts with a view to how they would work, and where the tricky bits might be hiding.

0 comments:

Post a Comment